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Summary

The requirement of using self-consistent amplitudes to evaluate mi-
croscopically the scattering of strongly interacting pariicies from nu-
clei is developed. Application of the idea to a simple model of pion-
nucleus scattering is made. Numerical results indicate that the expan-
sion of the optical potential converges when evaluated in terms of fully
self-consistent quantities. A comparison of the results to a recent
Jdetermination of the spreading interaction in the phenomenological iso-
bar-hole mode! shows that the theory accounts for the sign and magnitude
of the real and imaginary part of the spreading interaction with nc ad-
Justed parameters. The self-consistent theory has a strong density-
dependence and the consequences of this for pion-nucleus scattering are

discussed.

I. Introduction

The first part of this set of two seminars will consist of a review
of several of the important accomplishments made in the last few years
tn the field of pion-nucleus physics. This {s intended as an introduc-
tion, for those who may be unfamiliar with the field ¢f pion physics, to
concepts which will be used throughout the development of the idea of
self-consistency. Next I will discuss some questions raised by these
accomplishments and show that for some very natural reasons the commonly
employed theoretical methods can not be applied to answer these ques-
tions. This situation leads to the idea of self-consistency, which is
first explained in a gencral context. The remainder of the seminars arc
devcted to il1Tustra.ing the idea within 3 simple myltiple scattering

model for the case of pion scattering. Numerical results for this



application will be presented. An evaluation of the effectiveness of the
self-consistent requirement to produce a solution to the model will be
made, and a few of the questions raised by recent accomplishments in the
field of pion physics will be addressed in the model. Finally, the re-
sults of the model calculation will be compared to experimental data and
implications of the results discussed.

The field of pion-nucleus physics i1s a relatively new field and has
become Quite active only in the last decade. In contrast to, say. the
development of proton-nucleus theory, answers to questions of a micro-
scopic nature have been sought early in the development of the field.

One might say that the must interesting question addressed, and the one

which has been studied with most intense effort, is: "to what extent can
pion-nucleus scattering be understood as a succession of elementary, frec,
pion-nucleon scatterings?” The answer is that, at least in the energy

region of 75 to 30C “eV incident pion kinetic energy, the isobar 845

dominates the scattering. (the 833 is a pion-nucleon resonance with spin

and isospin 3/2 and relative pion-nucleon angular momentum 2 = 1) but that the
position and width of the isobar are strongly modified by the influence

of the nuclear medium.

This result has been m -t convincingly established within the "iso-
bar-hole'’ phemmenology."2 which is discussed in detail in Professor
Feshbach's lecturcs.3 [ssentially, the isobar-hole mode1]'5 is a coupled
channel approach which allows the isobar degrces of freedom to be iso-
lated and treated explicitly. The special features of this approach are
the following:

(V) Isobar and nucleon binding and recoil are carefully treated.
This is a very important fcature of the model. Although the physics
here may not scem very exciting, {t has proved to be a very difficult
technical and apparently numerically significant accomplishment,

(2) Pauli suppression is evaluated. Pauli suppression refers to
the requirement that A3y {ntermcdiate states should not consist of a
nucleon which has scattered into one of the nomally occupied nuclear

states.



(3) A phenomenological isobar "shell-model" potential is incor-

porated.2 It has the form
M(r) = Mp(r)/oy + T - 3, wis(r) (1.1)

The (complex) constants W. and W

0 Ls are adjusted to fit the elastic sca:-

tering data.

The most recent results of the isobar-hole modelz are that the
strength of the spin-orbit potential is comparable in size to the nu-
cleon-nucleus spin-orbit force and that Ho is constant in energy from
about 75 MeV t. 250 MeV with values ReW, = 30 MeV and lmH0 = -40 MeV.

The appiication of the isobar-ho’e model requires a very large com-
putational effort and for practical reasons of computer core size and
time limitations the model can not be applied to nuclei with A > 16.

The only technically feasible approach for heavy nuclei is that of the
optical model. The optical potential represents in an average way the
effect of the nuclear medium on the projectile. Therc are several micro-
scopic theorie, of the optical potential which permit its cvaluation
systematicaily from an underlying Hamiitonian or Lagrangian formulation.
One such approach is the Watscnh or &MT multiple scattering formalism
which is reviewed in Professor Feshbach's Iectures.3 These formalisms
are not fully - isfactory for the >cattering of pions due to the fact
that in nature number of pions is not conserved, but nevertheless the
approach is ofter used in pion physics. Another systematic approach

uses diagrammatic perturbaticn thcory and the Jyson equation6 to calcuy-
late the amplitude. This approach does apply to the case of the pion,
and ir this throry the ontical potential s the pion proper sclf eneryy.
Unfortunately, the language is similar in these two approaches but in
some instances the meaning of the language is not exactly the same, which
naturally leads to communication difficultiec. 1 <hall use the Dyson
equation and Feynman diagrams in these lectures.

In any case, if the interaction between the pion and the nucleon s

assumed to be a potential, either of the two approaches will, by its own



route, lead to the same optical potential U. In practice one often ex-
pands the optical potential as

U= ::‘ v, (1.2)
n.

where Un has n factors of the density. The leading term U] is in princi-
ple uniquely related to the (off shell) free pion-nucleon scattering ampli-
tude and the nuclear density matrix. The higher order terms depend in a
auch more complicated way on the details of the nuclear and scattering
dynamics.

The most extensive analysis of pion elastic scattering in an opti-
cal model approach has been carried out by Stricker, McManus and Carr7
and by Liu and Shakin.8 In these works Ul 1s fixed by the relationship
to the frec pion-nucleon amplitude just mentioned. The term U2 is then,
essentially, adjusted tc reproduce the ela.tic scattering data. The main
result for the purpuses of this lecture is that a substantial U2 correc -
tion was found.

de have therefore the same conclusion from both the isobar-hole
phenomenology and from the optical model phenomenology, namely that there
are substant.al corrections to the simplc picture of pinn-nucleon s:cat-
tering which would describe the scattering as a succession of elementary,
free, scatterings of the pion fror the constituents of the nucleus. The
quantities Ho and U2 arc different (but essentially equivalent) measures

of the correction.

Il1. Open (Questions

The question of fundamental concern is now to undorstand the origin
of the correction terms. That they are somchow related to the true ab-
sorption (a reaction process in which a p.on is present in the initial
but not the final state) ts universally believed, but the details of
this relationsaip could be rather subtle, It will tyke years of care-
ful theoretical and experimental wors to understand this process in

sufficient detall,



The true absorption of the pion is just one aspect of understanding
the correction terms and may actually not be the most interesting aspect.
The theory develops some interesting difficulties even in the absence of
the true absorption of the pion., This arises from the fact that the pion-
nucleon interaction is very strong, as explained below, from threshold
to beyond the position c¢f the 843 resonance.

There are two reasons why the pion-nucleon interaction must be re-
qarded as strong. The first is that the interaction has a very strcng
off-shell dependence. We write the dominant P-wave amplitude in a sepa-

rable form, letting t be the off-shell pion momentum, as

N CRE L @

where f(0) is the on-shell, forward scattering amplitude (which is there-
fore w-dependent) k is the on-shell momentum (uzrk2+mi). and v(t) is the

pion-nucleon form factor, which is commonly taken to have the form
v(t) = t(1et?a8) (2.2)

The point is that most modern analyses which carefully treat the nucleon

Born term show that a is a large numhor.9‘10

close to 1 GeV/c. Thus, 1t
is favorable for the pion to develop large high momentum components in
its wave function, particularly at .c.’ energy where the damping is rela-
tively small. One also expects the evaluation of higher order terms in
the optical potential to become more uifficult because of the large value
of a.

The second measure of the strength of the interaction is the size

of the cross section, which becomes very large right at resonance. Here,

we have

oror * 3 Lela'N) « o(x'P)] - 130 mb, (2.3)

If we determine the radius of the area sceen by the plon by equating hIOI
to nR? we find R = 2.0 fm. Comparing this to the average interparticle
spacing, which at the center of the nucleus {s about 2 fm, we see that

the nucleons present strongly overlapping targets to the plon. It is



qQuite plausible to expect frequent scattering events in which the pion
interacts with several nucleons at once, or with a "cluster" of nucleons.
This makes higher order terms in the optical potential large and diffi-
cult to calculate.

There nave, in fact, been numerous calculations of certain higher
order terms in the optical potential over the last few years, and one
term in particular has been identified as being particularly troublesome.
The term in question is the local field correction, which arises from a
scattering event in which tha pion strikes the same nuzleon twice, illus-
trated in Fig. 1. The most careful calculations of these have been given
in references 4 and 11, but the term was also found troublesome in earlier

WUrKS as wo11.]2

The local field correction appears to be able to attain
a size comparable to the lowest order uptical potential at the center of
the aucleus.

Aside from the question of how to interpret the large isobar spread-
ing interaction, the existence of the spreading potential raises addi-
tional questions of some practical importunce. These are

1. What is the correct density dependence of the spreading inter-
action and U2?

2. Khat is the spin and isospin dependence of the spreading inter-
action?

3, What is the spin, isospin and density dependence of tne transi-
tion operator for inelastic scattering?

4. Can the pion be used as a tool for quantitatively probing the
structure of nuclei?

1. 1s hard to imagine that unc can satisfactorally answer these
questions unless more powerful thecoretical methods are developed which
permit reliable calculations beyond lowest order in the density expan-
sion of the optical potential. The main subject of these seminars is to
seek an answer to the question: what theoretical methods can perrit
reliable calculations when perturbation thcory breaks down?, or put

somcwhat more gencerclly: how can the many-body problem for hadron-nucleu.



scattering be solved, given a fundamental interaction Hamiltonian?

111. Self-Consistent Hadron-Nucleus Scattering

The goal of self-consistency 1s to create a non-perturbative theo-
retical approach to hadron-nucleus scattering which will overcome the
problems that arise because of the large strength of the elementary
interactions. The idea was suggested in Ref. 13 and was developed there
from a multiple scattering point of view. In this talk I will use an
approach based on diagrammatic perturbation theory and the Green function
G(r,r'), defined as the amplitude to find a pion of energy w at point
in the medium if i1t was inserted in the medium at point r'. In the ab-

sence of interactions the Green function 1s given by

Gy(r,r') = — (3.1)

where 5 1s the pion momentum. When interactions between the pion and the
medium are considered, the interacting Green funrtion G is given as the

solutior of an integral equation
(') = Golrar) + fo fan, Syrary) Urpry) Slrpr) (3.2

where U is called the optical potential in multiple scattering theory
and the pion "proper self energy" ir field theory.

To explein the idea of self-consistency, let us assuma that the r.-les
for constructing U 1n terms of the free pion-nucleon scattering amplitude,

f, and the free pion Green function are known
V= LUf, GO' Oy ¢+ ] (3.3)

The dots indicate that other quantities mﬁst be also specified in a com-
pletc theory. Let us also assume that the rules for constructing the
frec pion-nuclcon scattering amplitude in terms of the elementary inter-
action Hamiltonian h, and the free Green function is known,

f = f[h), Gy . . ] (3.4)

where we have again allowed for the theory to depend on other quantities

as well. Usuaily the theory of scattering of a projectile frem a composite



© system is presented in terms of the rules we have assumed: one first
solves the theory to obtain f, one secondly evaluates the optical poten-
tial in term; of this f and the density and lastly one solves for the

" scattering wave function to compare with the experimental data. For
pions and presumably other strongly interacting probes as well, such as
K~ and anti-orotons, some steps in this 1ink will not work. In the case
of pions, the perturbation expansion for U in terms of f and p does not
converge, which leads in turn to additional difficulties.

The idea of self-consistency is to provide a feedback mechanism in
the chain ~f calculations so that the theory is given a way to dynami-
cally modify 1tself in response to a pathological situation (for example
an exceedingly strong projectile-nucleon interaction). Whether it will
respond in the ccrrect way 1s not a priori assured, and in any given
case one has to look carefully at the results to convince oneself that
tnhe self-consistent theqry is béhaving better than the usual theory.

To create the feedback, the idea is to define a "self-consistent"
amplitude, ;. by substituting in Eq. (3.4) the complete Green function

for Go. i.e., define

fzfh,6, ...] (3.5)

Now, such a substitution would lead to complete nonsense if G were de-
fined as (u-H)']. which 1s a many-bodv operator, and we were working with-
in the Watson or KMT multiple scattering fonnulntions.3 However, this
substitution is allowed here because the Green's function of Eq. (3.2) is
essentfally defired so substitutions such as the onv in Eq. (3.5) is per-
missible, {.e., 1t accounts for all pussible "dressings" of intermediate
pion propagators in f by the self eneryy effects due to the medium,

The second step of the transition to a fully self-consistent theory
1s to cvaluate all the contributions to U 1n terins of ; and G. Thus, onc

insists that
ULf, Ggr + . 2] = ULF, G py o o 2] (3.6)

and in order to have this equality satisficd the rules for enumerating



and evaluating diagrams must be carefully thought out in order to avoid
over-counting or under-counting the terms, i.e., in order that the self-
consistent theory is identical to the usual theory term-by-term in per-
turbation theory. The equation for G is still that given by Ey. (3.2).
Tke procedure for implementing self-consistency has now been fully
specified. It is sufficiently general to be applied to any hadron-
nucleus scattering situation which has a Hamiltonian formulation. Next,
I want to give as an example the realization of these equations in a
simple but nontrivial model of pion-nucleus scattering and to evaluate
the conjeciure that self-consistency leads to a more sensible theoretical
description in this model. If this conjecture is valid, then one may
study in detail the questions raised earlier, which have no well-defined

answers in usual theories.

IV. Realization of Self-Consistent Theory in a Model

It may not be apparent to everyone how to proceed to implement self-
consistency based on t'ie discussion of Sect. III, so in this section I
want to present a model in which all the details are worked out. Because
the main intention of this section i: pedagogical, a simple theoury is
more to the point than a complicated and possibly more realistic theory.
Hence, purely for purposes of illuitration, I choose to apply self-con-
sistency to the fixed scatterer multiple scattering theory of Foldy and
Halecka.14 The main assumptions of this theory are that a separable po-
tential acts between the projectile and the target nucleons, and that the
target nucleons remain fixed as the projectile scatters. The positions of
the nucleons are eventually averaged with a nuclear density function.

The pion Green function may be evaluated based on the developments in the

original paper by Foldy and Walecka,]5

and the various contributions to
the Green function are 1llustrated in Fig, 2. 15 further simplify the
problem 1t will be assumed that the pion interacts in an in%inite nuclear
medium of uniform den-ity p. The nucleons will be assumed to experience

short-ranged (anti-) correlations which are described by the radial dis-

tribution function R(r) given by
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R(r) = 8(jr[-A) , A= 0.5 fm (4.1)

Only correlations between successively struck nucleons are retained.

For the sake of definiteness, let me state the fyles for evaluating
the diagrams of the pion Green function. The enumeraéion of the diagrams
has been discussed already in the caption to Fig. 2. These are the rules
of the usual theory, i.e., in the absence of application of the self-
consistency requirement.

1. Nucleons do not propagate and are denoted by an "x." Each
struck nucleon contributes one factor of p.

2. Pions are represented by directed 1ines which indicate the
flow of momentum.

a. Each internal pion line (of momentum t) is assigned the
value
iAXet

e' "z
-7 8(|ax| - A) (4.2)
k-t +in I'I

where Ax is the “istance between the nucleons, counted in
the direction ¢t the pion momentum and k is the "incident"
»ion momentum (w2=k2+u2).
b. Initial and final pion propagators contribute, respectively,
e K "Xi ang e 1KXf
3. tach scattering contributes a factor

-4npf(t,t') (4.3)

where f has a separable form [see Eq. (2.1)] in each partial wave.

4. Integrate over all internal pion mcmenta and nucleon positions.

The input to the theory is an off-shell pion-nucleon scattering
amplitude and a correlation length A; the diagram rules provi. the link
between this input and the result we want, which is an expression for the
pion self-energy. Note incidently, that although it makes nc sense to
actually scatter pions from an infinite medium, the Green function is a
well-defined quantity, since it describes the propagation of the pion

from a source which can be properly imagined to be embedded in the medium.
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Once one has a theory for the pion self-energy, including its dependence
separately on energy, density and momentum, it is possible to make esti-
mates for scattering from a finite nucleus by using this juantity in the
Klein-Gordon equation in the local density approximation. The exact,
but technically much more difficult, procedure is to formulate the prob-
lem with the correct density-dependence of a finite systom from the
outset.

I have just described the theory to which I will now proceed to
ipply the ideas of self-consistency. The application has been worked
out in detail in Refs. 15 and 16.

Consider first the self-consistent amplitude }. We first need the
expression for f in terms of V and Go [see Eq. (3.4)], which is just

the Lippman-Schwinger equation in terms of the po.-ntial V

3,
flte') = v(t,t) « an [ EE v(e,en) G(t") fen.t) (4.4)
o T T (2n)3

where Go(t) = (kz-t2+in)'1 . In accordance with Eq. (3.5) we write

~ 3 n i -
f(E'E') = V(E'El) + 4"-/- izt) ?Zt) V(EIE") G(E"'Em ) f(E"I lEI)
m m

(4.5)
Eliminating V in favor of f 1n Eq. (4.5) yields

;(t.t') = f(t,t') + 4r d t'3 4 t'; f(t t")g(t" t"')f(t“' t )
== - (2n)°7 (2n)
(4.6)
where

5(5.5') = G(t.t') - (2n)3 8(t-t') Go(t) (4.7)

The operation leadirg from Eq. (4.4) to Eq. (4.6) is standard in scatter-
ing theory and a similar operation is described in detail in Ref. 3.

Next we need an exprcssion for the Green function. In discussing
interactions in a correlated mediim it is convenient to define an auxi-
liary Green function, which propagates the pion between Egégggrjpg_ggg-
ters. This quantity is defined diagrammatically in Fig. 3 and is repre-
sented diagranmatically by two parallel lines. This diagrammitic series

is summed by the following integral equation
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olte (xe-x3)
G(tt.x-x)t(Zn) 6(tt\—-z—2———R(xfx)

k™ -t +in

3. -~
fd t F(t .t xe-x) G(t" t's x-x;) (4.8)
(ZW)

Note that E depends on the initial and final pion momenta and by the posi-
tions of the initial and final nucleons struck. We use the rotation that
the kernel of the Green function is - 4ﬂpF.

The relationship between ;(E.E') in Eq. (4.7) and E of Eq. (4.8) is
straightforward,

9(Et') = B(t,t'5 xeox,)

X_EX. (4.9)
f i
If we had not been usina the correlations in the medium which vanish
when Xe = X; then the subtraction in £q. (4.7) would need to be made
after setting Xe © X The fact that R vanishes in our case means that
the co-rect relationship is that of Eq. (4.9).

Finally, consider the series expansion for the kernel ; of the auxi-
liary Green function. The idea is to rearrange the diagrams which appear
in the kernel U of the usual theory~ so that these diagrams can be ex-
pressec¢ e«plicitly in terms of ; ard E (and hence only implicitly on f
and GO). As stated in Sect. III, we insist that the diagrams of U ex-
pressed in terms of f and Go are 1n one-to-one correspondence with the
diagrams of E. when ; and E are expanded out in terms of f and GO' Hence,
to avoid making counting mistakes, some of the topologies which origi-
nally contributed to U will not contribute to G. The rules for construc-
ting G are

1. Begin by considering the exparsion of U in terms of f and Go.

Eliminate all diagrams 1n which any intermediate pion propagator has a

o ————
The krrnel of the usual th-ory is, as stated earlier, the pion proper
self-cnergy. More specifically, it is the sum of all diagrams beginning
and ending with a single plon such that no dragram would break into two
nfeces when an internal pion line is cut.
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proper self-energy insertion.

2. Replace all ‘nternal pion propagators by E.

3. Replace all free pion-nucleon scattering amplitudes f by ;.
Figure 4 illustrates valid and invalid contributions to G. The torms
(b), (e) aud (f) do not exist in ﬁ according to rules 1 to 3 above.

Term (4b) 1s not valid because ; already contains all intermediate in-
taracting pion propagators [see Fq. (4.5) and, for more detail, the argu-
ment preserted in Sect. V.]. Term (4f) is not allowed because an inter-
mediate pion propagator has a self-energy insertior Diagram (4f) is
already included in diagram (4c), since G contains, by definition, all
proper self-energy insertions. Diagram (4e) is not allowed for both
reasons just discussed.

The self-consistent Foldy-Walecka theory is summarized in Fig. 5.
Figure 5a shows the integral enuation for E; Fig. S5b shows the integral
for ;; and, Fig. 5c gives the expression for the kernel -4ﬂ\;. Note
that the diagrams of F depend on the density p implicitly through ; ard
é and also explicitly, i.e., each vertex contains one explicit factor of

p-

V. Solution >f the Self-Consistent Theory, First Order

To solve the self-consistent theory summarized in Fig. 5, 1t is use-
ful to procecd systematically, as follows. Group together the terms of
Fig. 5c having the same number of explici: powers of density. We shall
define order as Lhe number of explicit powers of o appearing in the dia-
grams. Thys the first term on the right hand side of Fig. 5c is the first
order term. The next three diagrams are the leading terms in the second
order theory, 1.e., the terms in the second order theory having the fewest
number of factors of f and G. The leading third order term fs the last
diagram shown in Fig. 5c. In this section we shall present results for
the calculation of the first wrder theory in some detail ahd then present
the results for the second order theory in Sect. VI,

The first order theory consists of the following equations

s ) = 1) 83 (an) (5.1)
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where the G(J)(q;) means that the initial and final pions both attach to

the same nycleon,

- 1t (xf-li)
G(t,t's xp-x;) = (2n)3 8(¢-t') & —2——2'— R(xg-x,)

(5.2)

it *(xf-x;) a3t
-mfax ST M) (—2— fL7) Bt xox,)

where R(x) is given in Eq. (4.1), and

~ 3
d t“ t"
f(t.t') = f(t,t') - 4n f(t, t") (t" t" ) f(e,te
(t.t') = f(t,t") - (2—")5( g ) f(e e

(5.3)
where

;(3“.2) z 5(3".5; 51'5i)| (5.4)
XKo" Xy

Equations (5.2)and (5.3) are two coupleu intcgral equations which must
be solved to obLtain ; and &. The coupling between the integral equa-
tions provides the feedback upon which 1ies the hope of finding a more
sensible solution than that provided by the usual theory.

Before showing the numerical solution of these equations I first
want to address the qrestion: how much of the complete multiple scatter-
ing series is contained in ;? To answer this question, first iterate
£q. (5.3) to obtain the series expressing f in terms of f and n shown
fn Fig. 6. Next, find the expansion for ; in teims of ; and Go shown in
Fig. 7 by iterating £a. (.2) and bringing the ends of the propagators
together as required by £q. (5.4). Finally, by repeatedly inserting Fig.
6 and F1g. 7 into each other, the srquence shown in Fig. B is obtained.

One easily sees that

(1) all diayrams of f are valid contributions to the pion proper self-
energy in the loldy-Walecka theory, properly counted. This {1)us.
trates explicitly the point discussed in a more general context

below fq. {3.5).
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(2) The troublesome local field correction is contained 1n ;. This re-
sult is desirable, because one would 1ike the lowest order approxi-
mation in a theory to contain the most significant terms.

(3) Some valid contributions to the optical potential are not contained
in ;. This observation is essentially already made in recognizing
there are second order (and higher) terms present in Fig. 5¢c. Note,
however, that the order of summation is different in this theory

12,14 since the local field correction is not a

and other theories
second order term in our scheme.
If we assuma that the free piorn-nucleon scattering amplitudc cor-

sists of a single partial wave ¢,

f(t,t') = [W(t)/v(k)] £(0) [W(t')/v(k)] P (t-t') (5.5)

where PL is a Legendre polynomial and 0) is the forward, on-shell
plon-nucleon scatterirg amnlitude., Eqs. (5.2) and (5.3) inply that ;

has the form

flt,t') = [v(t)/ V(K] £(0) [W(t')/v(k)] P (L-t") (5.6)

where ;(0) f= a function of energy and density. In other words, self-
consistency doers not change the f . jonal form of the dependence of the
amplitude on t or t', or its angular dependence; 1t changes only the
encrgy-dependent term in the amplitude.

16

The quantity f(0) can be shown - to satisfy the vollowing {nteqral

equation, equivalent to [qs. (5.2) and (5.3)
- - s 2. n?
4 22 K“dk P*(kK:20;m)
£(0)-1(0)4 ro)ro)L [ . . et e
250 '“_;_/(x’ K’ -in) (K?-k?-dnpf(O)P(kK;ll‘;m)
(v.7)

where the functicen P(kK;#f:m) depends only on the "known" quantities

R(r) and v(t),.

[ I A | [ S|
P(kK;tf:m) ~ (-)'“I( ) ( ) "1" (k.K) (5.8)
L\m-mo 000
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where

P (k.K) = qu(x’-uz)[ rPar 4, (ke) HE(kir) R(r) (5.9)
and

1] 2 - 2

HL (k;r) = r _[ tzdt JL (tr) :—2-&;- (5.10)

To obtain the numerical results shown next we have used the form
factor in Eq. (2.2) with a variety of choices of u. Figure 9 shows
Im;w)as a function of incident pion momentum and for p = Po° 0.16 fm'a.
which is approximately the central density of nuclei. The solid curve
is f(0), shown for comparison. The value a = 3.75 fm'] 1s the preferred
valve, as it corresponds to Ref. 9a. Figure 10 shoi..s Re;(o). One

notices from the figures that

[0) /1£(0)] < 1 (5.11)
whenever f(0) is large, which implies that f is a more efficient expan-
sfon parameter than f.

It {s evident from Figs. 9 and 10 that ; approaches a definite value
as a » m~. This limit has been called the "Beg 1imit." A1l theories

have this 1imit'® provided they satisfy the condition that
v(ir) =0 for r > A/2 (5.12)

where v(r) {s the Fourier transform of the pion-nucleon forn factor v(k)

and A {s the minimum distunce of separation between nucleons enforced Ly

short range correlations. It turns out that the theory of Eqs. (5.¢2) and

(5.3) ha; an analytical solution in this 1imil.‘5 Sume of Lhe properties

of this solution are

(1) The dependence of ;(0) on p has a squarc root branch point at
pp~0.05 fo- This fmplies that the self-consistent theory {5
equal ‘0 the usual theory for p - fo but not for p » oo since the
usual theory will not converge av these densities.

(2) The pion mean free phth A may never be less than spproximately 3/4

of the interparticle spacing. At nuclear matter densities this
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gives A = 1.5 fm, in contrast to estimates based on 1nwest order

theories]7 which give A = 0.5 fm at resonance. As emphasized by

T.Ericson in his lectures.la

to give rise to variations in the pion wave function on a scale

no reasonable theory can be expected

substantially shorter than that set by the interparticle spacing.

(3) No Kisslinger anomaly can occur at any density. This is a welcomed

result, since in essentially all other theories of pion-nucleus

scattering the pionic wave-function develops spurious high momen-

tum cemponents at low e.ergy (this is the symptom of the Kisslinger

anomaly) due to the strong off-shell behavior of the (3,3) ampli-

tude. Specific higher order terms tend to push around the energy

and density at which the anomaly occurs, but self-consistency elim-

inates it once and for all.

Consider next the density-dependence of the self-consistant ampli-

tude. In Fig. 11 the density-dependence of f(0) is shown for the case

ar 3.75 fm'] for incident pion energies between 150 and 180 MeV. The

res;1ts in the resonance region have been parameterized by the following

expression, valid for incident pion kinetic energy from 150 to 210 MeV,

flo.k) = f(k) + P r,-p-};,: [9) (k) + £- g(K)) (5.

Pc

where 91(k) and gz(k) are given by

ay(k) = 1 b, (k-1.4)9 L 135k s1.63 ",
J

With k expressed in fm". the numbers hij are qiven in Table 1. The

best fit to the density dependence was obtained with

DC r Po/d- (5-

It is apparent from Fig. 11 and [q. (5.13) that the rate of fall-off

f is diffevent for p o« e and p > N At low density we have

floak) = 1) CBogy (k) o< g (5.

end at high density

;(n.l) m f(k) + g|(k) W P g?(k) N pc (5.

Pe

(5.

13)

14)

1%)

of

16)

17)



For pion elastic scattering near resonance, the angular distribution is
determined mostly by the property of the optical potential near o/p0 =

0.1.]9 and therefore Eq. (5.16) determines the pz

correction to U (re-
call U = -4npf) which is effective in elastic scattering. The correc-

tion is small due to the fact that p is small, but it is nevertr:less

larger than one might ordinarily expect for a pz term, For example, at
k=1.4 fm" we easily find (see Table 1)
Q (O] e ). {5.18)

This 1s unacceptably large in a theory which constructs U from terms
lincar and quadratic in the density only, but in the theory being dis-
cussed a catastrophy at the center of the nucleus is avoided by the higher

order terms in f.

VI. Solution of the Self-Consistent Theory, Second Order

Here ! wili skip most of the details of the calculation; they can
be found in Ref. 16. The ideca is to sum the second ordcr terms shown in
Fig. 5¢. Fully self-consistent ; and 6 were used to evaluate these terms
in accordance with the theory of Sects. 11l and IV. The numerical re-
sults for the second order terms are shown in Figs. 12 and 13. The sizc
of the correction tends to be larger for larger a. Figure 14 shows the
relative size of the second order picce to the sum of first plus second
order. For a realistic choice of u, corresponding to the long dashes,
the correctio:, 1s less than 20% for k/p > 1.4 or pion kinetic energy
greater than 100 MeV. Thus, for the purpose of studying scattering of
pions in the resonance region ¢ owest order self-consistent theory
provides a semi-quantitative solution to the moiel problem.

What happens when 6} 1s added (o E and [q. (4.5) {s-solved to oh-
tain a new ;? It {s a matter of experience that the results are stable
against this {teration. The source of this stability can be seen as
follows. Suppoie that an additive correction A s made to f. For the

sake of {1lustration, let this correction have the same partial wave
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component £ as f and f. According to the theory summarized in Fig. 5,
f must now be evaluated with the Green function G which has the new F
as its kernel. In this way f depends on A, and we want to see how f

depends on A. It is easily seen that f(U,A) now satisfies the equation

[compare to Eq. (5.7)1

. A0 Z/maN[Elo. ? P2 kKiLe,
F(0:)=7(0) + 7225 TN (Fa0)0] £(0) £ fkaK 7;.—{2]?'“1

x ) (6.1)
Kk anp[ 1(0:2)+2] P(kK:2e:m)

Upon adding A the quantity F(O) = ;(0) becomes
F(0) » F(0;)) = £(0;2) + A (6.2)

For small changes A, ;(O;A) may be evaluated by making a laylor series

expansion. The derivative d;/dx may be evaluated using Eq. (6.1), and

we find

df _ p df

ar. % g (6.3)
rd hence

F(0;1) = f{0) + A(l +% g;) (6.4)

evaluating the correction ncar resonance [using Eq. §.13) and Table 1]

and fur p = Po® we find that
p df | w5
| 1 ¢4 ; do | 0.'5 - 0.85 (6.5)

with the largest redu  ions occurring aff-resonance. This reduction
factor decreases very slowly as p s decrcased. We therefore sce that
the response of the system s such as to oppose the addition of further
corrections. Thus U and results which depend on U are less sensitive to
corrcctions than might have heen expected, when U {s evalusted self-
consistently, Corrections to the Foldy-Walecka theory which must be
considered include binding and recofl of the nucleon and isobar, the

spin-orbit force, the Paulf principle and the true ahsorption of the pilon,



- 20 -

The main result of this section is the verification of the conjec-
ture made in Sect. IIl that the expansion of the optical potential would
converge rapidiy when evaluated self-consistently. The reasons for ex-
pecting the same conclusion to hold at higher order are
(1) The use of ; rather than f as an expansion parameter to evaluate

higher order terms in U. It was shown in Sect. V that I;/fl <

whenever f {s large, and hence tesms with iarge numbers of scatter-
ings are strongly suppressed.

(2) The use of E rather than G, to evaluate higher order terms in U.
This {s advantageous because 6 falls off with distance exponentially
in accordancce with the mean-free path of the pifon, with the result
that terms with large numbers of interconaecting pion propajators

are strongly suppressed.

VII. Comparison of Self-Consistent Theory to [xperiment

Sections IV to VI concerned the pedagogical development of the idea
of self-consistency in a mode!. The model has a number of shortcomings
which were enumerated in the last section, and one might therefore cxpoct
that the numerical results would not compare favorably to experiment.
However, we have scen that the sensitivity of the theory to addition of
corrections {5 less strong than it would have been {n the absence of
self-consistency. In view of this 1| shall proceed to interpret some of
the recent interesting experimental and theoretical results in terms of
the framework developed here.

I first want to compare the results of the last two sectiony tu the
phenomenclogical spreading potent fal of Horokawa, Thie+ and anl.? die-
cussed in Sect. 1. To make the comparison, | define the spreading inter-
action H; in the theary tn the same way as done in Ret. 2, {.0., RPHL
dntermines the shift of the mass of the isobar and lmwb determine, the

spreading of the width. This con be accomplished by setting
=ugy Hr(k)/2?

£(0) + &1(0) = f(0) I .
w-mn—wo Hr(k)/2?

(7.1)



where ?(0) and 6;(0) are the first and second order contributions to F
in accordance with Sect. V and VI with a = 3.75 fm"! and p = py. Equa-
tlon (7.1) is solved fur H; and compared to the phenomenological result.
This comparison !s meiningful because neither Ho nor H; includes the
Pouli effect, the spin-orbit potential of the isobar, and the binding
and recoil of the isobar. True absorption of the pion 1s not explicitly
1ncluded in the model but, as we argue below, a romparison to 2xperiment
{s sti1] meaningfu). The results are shown in Fig. 15. It is seen

ti:at the sign and magnitude of the experimetal result is reproduced by
the theory. 1 regard this comparison to be rema=kably good, consider-
ing that the theory contains no adjusted parameters (the value of a was
taken from Ret. 9a). On the basis of this figure there appears to be
more energy dependence in the experiment, but 1t should be observed thal
the empirical value of lmHo does becone positive at somcwhat higher

energio.'.I for 16

0, which might be taken as evidence in favor of the shape
of the energy dependence of the theory.

As we pointed Lut above, the true absorption of the pion 1s not ex-
plicitlv taken into account in our mcdel calculation. Yet iL 1s un-
doubtedly true that a large part of the Ho term {s related to the true
absorption of the pion. How can we reconcile the excellent agrecment in
Fig. 15 with this fact? Part of the answer is Lo be found in the follow-
{ng result. We have added a constant imaginary term proportional to p to
the kernel E to stimulate the crue absorption of the pion. We found that
the self-consistent value of ; (and hence HE) wias very insensitive to the
magnitude of this term, upon varying it from the size found {n empirical
pienic atom studies to 10 times this value. The insensitivity {s under-
steod at least in part from the arqument presented at the end of the
last section.

The physical interpretation of this result {s the following., The
depletion of flux from the elastic channel {« already so cumplete due to
quasierlastic scattering. that there {s 1itLle left for other channels to

remove. For elastic <cattering of a sufficiently strongly ahsorbed probe,
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these results suggest that it 1s much mre important to evaluate the
interaction self-consistently than to treat the individual reaction
channels in full detail.

To learn whether the dominant reaction mechanism in the model .-
ory is approximately correctly described one would 1ike tc know the ex-
tent to which multiple quasielastic scattering plays a role in the total
pion reaction cross section. [t is commonly asserted that it plays a
relatively unimportant rolezo because the partial cross section for a
pion to disappear completely in the final state accounts for about half
of the reaction cross section. However, this interpretation is called

21 which finds evidence

into question in a recent experimental result,
for clusters containing as many as five nucleons to be involved in the
absorption process in a heavy nucleus. This result suggests that the

true absorption cross section is driven by multiple quasielastic s:zat-
tering, 1.e., that true absorption is the inevitable demise of the jion
after 1t does what i1t most 1ikes to do, undergo multiple quasielastic
collisions. It is tempting to associate these clusters with the higher
order terms of Fig. 8, but a proper calculation of the absorption of the
pion in such an involved event would require adopting a more comprehensive
theoretical framework than that provided by the model theory on which

our numerical results are based. It is important Lo come to a clearer
empirical characterization of the reaction mechanism in pion-nucleus
scattering and onc would therefore iike to have more detailed data of

the type pioncered by Ref. 21,

Ty understand in somewhat greater detail the effect of the higher
order corrections in U on elastic scattering we have evaluated the elas-
tic scattering anqular distributions based on the construction of the
optical paotential from the lowest order term of the theory of Scct. V.

To display our results in a meaningful fashion, we have evaluated the

parameters h]. Y and a which reproduce the cross section in the fonnz?

ﬂ:’, . ;: J;(aR) Re 1(1-aq) ’ (7.?)
where

RZ = b7+ ?h [r(1-1aq-a/2b)- r(14taq-a/2b)1/Re 1r(1-1aq) (7.3)
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and

b= b, + afen_2tn 2+ % ln(l+Y2)-1 arc tanY] (7.4)

The parameter b] determines mostly the location of the diffractive mini-
ma, Y the depth of the minima and a the rate of fall-off of the angular
distribution. The energy dependence of these quantities are shown in
Figs. 16 to 18. The dots represent experimental points determined as
described in Ref. 23. The dashed curves are the values obtained from
the standard lowest order optical model theories and the solid curves
represent the result of the self-consistent theory. MNctice that the
self-consistent theory is in slightly better agreement with the data
than the lcwest order theory. This prasumably reflects the agreement
with No scen 1n Fig. 15. The fact that there remains a discrepancy,
particularly evident in Fig. 17. between the data and the cxpei iment 1is
presumably a reflection of the fact that the energy shift arising /rom

24 The

the recoil of the {sobar has been neglected in constructing U.
higher order terms have measurable effects on the cross section in the
resonance region, and a proper description of the scattering requires
inclusion of both the higher order terms and the energy shift due tu the
isobar recoil.

To oLtain the results in Figs. 16 to 18 the optical potential was
constructed from the densities based on Ref. 25. The optical potential
utilizes the density dependence of ; in Eq. (5.13) and Table I and assumes
that the off-shell extrapolation of ; 1s linear in the initial and final
pion momenta. A local representation of U was obtained and then the ana-

lytical theory of Ref. 22 was used to calculate b1. a and Y from this

potential,

VIII. Sunmary and Discussion
The idca of sclf-consistent evaluation of hadron-nucleus scatter-
ing amplitudes was developed in a genaral context in Sect. III and i1lus-
trated in a model in Sects. IV to VI. The main motivation of self-consis-
tency was to search for an alternative method for evaluating scatterirg

from nuclei theoretically when the underlying hadron-nucleon interaction

1s very strong. We were able to verify in a nontrivial model of. pion-
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nucleus scattering that the self-consistent evaluation of the theory
provides a solution when usual approaches fail. Similar methods would
presumably be of value in studies of K -nucleus and anti-proton nucleus
scattering.

In Sect. II a number of theoretical questions were posed. These
questions have remained essentially unanswered because of the convergence
difficulties encountered in calculating the pionic optical potential
beyond the lowest order. The self-consistent theory does riot have these
difficulties and these questions can therefore be addressed in any given
model. In Sect. VII I examined in some detail the interpretation of the
spreading interactior of Ref. 2 using the results of Sects. IV to VI.

Tne main result is that t+ - theory reproduces the sign and magnitude of

the spreading interaction with no adjusted parameters, and that this re-
sult appears to be very insensitive to details of the model as a conse-

quence of the self-consistent treatment.

Recently several calculations of pion-nucleus scattering have bcen
'r‘t!ported.z6 which represeni ambitious =ytensions of self-sonsistency as
applied in Sects. I'" to VI, and in which iull recoil, Pauli effects and
true absorption are Llaken into azcount. These calculations are much
more compiicated than the one presented here. The insensitivity of the
calculaticn to addition of higher order eftcects discussed in Sect. VI
gives rise to the conjecture that tne corrections such as those attempted
in Ref. 26 will have a small effect. To check this conjecture, one would
like to see a self-consistent calculation with all the corrections included
compared to a self-consistent calculation with the corrections selectively
turned off. 1f the theory proves to be insensitive tu corrections when
evaluated in this fashion, we would thcn be much closer to a practical,
microscopic theory of pion-nucleus interactions, i

The sccord question examined in some detail was the density depen-
dence of the optical potential. The self-consistent theory gives rise
to a new result, namely 1t predicts the existence of a critical density,

Per which we {ind to occur at P = 00/4. For densitics less than e the
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density-dependence is quantitatively different from that for densities
greater than Pe: The most rapid density variation occurs for low den-
. sities, on the basis of which one may characte ize the higher order
effects as sticking out in the nuclear surface. It is therefore nec-
essary to include the density-dependent corrections in the optical poten-
tial arising from the self-consistent treatment of scattering. The effect
of these corrections on the angular distribution was examined in Sect. VII.
The strong density dependence of the higher order corrections in the
nuclear surface has implications for phenomenological analyses of scat-
tering experiments. In most analyses the higher order corrections were
assumed to have a smoother density variation than the one we find in the
model analysis. If the density varia.ion were allowed to be stronger
in the surface than in the nuclear interior, it would not be surprising
to see quantitatively different answers emerging in Refs. 1, 2, 7, anc B.
Several additional questions were raised in Sect. IT which vere not
answered here, but could easily be addressed on the basis of the methods
developed. These questions relate to the spin and isospin dependence of
the self-consistent theory. Pnswers to such questions are needed in order
to extend the theory to treat inelastic and charge exchange scattering
The equations needed to evaluate these effects in the Foldy-Walecka theary
are straightforward generalizations of the results of Refs. 15 and 16.
The successes of this model as discussed in Sect. VII make such a calcula-
tiun very interesting at the present time. Particularly in the case of
single and double charge exchange to analog states, the higher order terms

21 and these reactions

to thc optical potential have a striking effect,
may afford the best opportunity for a systematic study.

Finally, the question was raised as to whether pion-nucleus scatter-
ing can be used to learn aboul details of nuc.ear structure. This ques-
tion will continue to be controversial for ycars to come, ;ut the results
of the present theory have some discouraging and somc encouraging implica-
tions. The discouraging result 1s that the higher order corrections stick

out into the nuclear surface, where one has hoped to be able tn see the
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effects of nuclear structure without complications arising from higher
order effects. The encouraging result is that the simple self-consis-
tent approach discussed here seems to work well and may therefore be a
useful theoretical approach to serious microscopic calculations of

pion- (and other hadron-) nucleus scattering.
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Table 1. Values of hiJ in Eq. (5.14)

1 h 24

0 (0.064,-0.49) (0.004,-0.041)
1 (3.50, 1.46) (0.38,-0.265)
2 (-9.80,22.3) (2.50,-2.49)
3 (-14.1,-78.1) (-3.06,16.7)




Figure Captions

Diagrammatic representation of the local field correction. Figure
1a gives the representation in terms of the diagrams of Foldy and
Walecka, used extensively in these lectures, and Fig. 1b gives the
representation in terms of Feynman-Goldstone diagrams. In the

local field correction a nucleon (denoted 1) is struck twice with
an i{ntervening collision with nucleon 2.

IMlustrating contributions to the pion Green function in the theory
of Foldy and Walecka. Two types of processes are allowed: the pion
may multiply scatte= without ever hitting the same nucleon more than
once, or it may come back to a given nucleon after striking at

least one other nucleon before doing so.

Diagrammatic dzfinition of the auxiliary Green function, G. The
blobs are the pion proper self-energy insertions. The open circles
are to remind one that & ends and begins on scattering centers.

IV lustrating valid and invalid contri{butions to ;. The double
solid lines are E. defined in Fig. 3. The triangle A is the dia-
grammatic representation of ;. defined in Eq. (4.6). Terms (b),
(e), and (f) are not allowed in Fas they would lead to double
counting.

Summary of the fully self-consistent theory in diagrammatic notation,
Diagrammatic expansion of the self-consistent ampl{tude ; (2) in
terms of f (x) and 3.

Dfagrammatic expansion of the interacting Green runction § in terms
of ; and Go.

Diagrammatic content of i in terms of f and G, in lownst order theory.

lm;(o) for varicus values of a at p = 0.16 fm'J. The leqend (s
ceeam 25 m o o as s e s ae B ),
veservre g v m, The solid curve s £(0).

Rr;(n) for varfous values of a at p = 0.16 fm'J. The legend s the

same as for Tig. 9,



-29 -

Figure Captions (Cont'd.)

11,

12.

13.

14.

15.

16.

17.
18,

Density dependence of ; in the resonance region. The upper set of
curves is Im;(o) for T - 150 to 180 MeV. The lower set corresponds
to Ref(0). The calculation assumes o = 3.75 fm™).

Imaginary part of the second order correction to ;. The legend is
the same as Fig. 9.

Real part of the second order correction to ;. The legend is the
same as Fig. 9.

Relative size of the second order correction to F. The legend is

the same as Fig. 9.

Comparison of the theorctical spreading potentiazl. HE. to the phe-
nomonological result of Ref. 2. The solid curve is value Hg obtained
from Eq. (7.1) and the points with the erro' bars are taken from

Ref. 2. The triangles come from an analysis of 4He. the squares

160 and the circles 12C.
b‘ vs. pion kinetic energy Tﬂ in the lowest order free {- - --) and
self-consistent Lthoories ( -----) for 4OCa. The dot is the empirical

value taken from Ref. 23.
Y vi, pion kinetic energy T“. The legend fs the same as Fig. 16.

a8 vs. pion kinetic erergy T“. The legend is the samec as fig, 16.
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